Asymptotic behavior of the solutions of second-order difference equations

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

STUDYING THE BEHAVIOR OF SOLUTIONS OF A SECOND-ORDER RATIONAL DIFFERENCE EQUATION AND A RATIONAL SYSTEM

In this paper we investigate the behavior of solutions, stable and unstable of the solutions a second-order rational difference equation. Also we will discuss about the behavior of solutions a the rational system, we show these solutions may be stable or unstable.  

متن کامل

Asymptotic behavior of second-order dynamic equations

We prove several growth theorems for second-order dynamic equations on time scales. These theorems contain as special cases results for second-order differential equations, difference equations, and q-difference equations. 2006 Elsevier Inc. All rights reserved.

متن کامل

Asymptotic stability and asymptotic solutions of second-order differential equations

We improve, simplify, and extend on quasi-linear case some results on asymptotical stability of ordinary second-order differential equations with complex-valued coefficients obtained in our previous paper [G.R. Hovhannisyan, Asymptotic stability for second-order differential equations with complex coefficients, Electron. J. Differential Equations 2004 (85) (2004) 1–20]. To prove asymptotic stab...

متن کامل

Error Bounds for Asymptotic Solutions of Second-Order Linear Difference Equations II: The First Case

This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. We discuss in detail the error bounds for asymptotic solutions of second-order linear difference equation yn 2 n p anyn 1 n q bnyn 0, where p and q are integers, an and bn have asymp...

متن کامل

Asymptotic Behavior of Solutions of Nonlinear Difference Equations

The nonlinear difference equation (E) xn+1 − xn = anφn(xσ(n)) + bn, where (an), (bn) are real sequences, φn : −→ , (σ(n)) is a sequence of integers and lim n−→∞ σ(n) =∞, is investigated. Sufficient conditions for the existence of solutions of this equation asymptotically equivalent to the solutions of the equation yn+1 − yn = bn are given. Sufficient conditions under which for every real consta...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computational and Applied Mathematics

سال: 1995

ISSN: 0377-0427

DOI: 10.1016/0377-0427(95)00152-2